THE #PEG ENGINE

A Specification for Draw-Based Monetary Allocation under
Proof of Luck

ABSTRACT

This document describes the #PEG engine, a draw-based
monetary allocation mechanism that introduces purely
denominative monetary units and allocates them through
execution constrained by chance.

A #PEG unit doesn’t carry intrinsic economic meaning: it is
not a claim, asset, entitlement, or representation of value,
and the Engine encodes no policy, valuation logic, or theory
of worth. Allocation occurs without reference to identity,
effort, capital, or merit, and outcomes are recorded as
monetary facts without corrective or stabilizing mechanisms.

The #PEG engine is presented as a structural monetary
system rather than a functional one. It specifies the minimal
conditions under which monetary units may be
denominated and allocated, while deliberately abstaining
from defining how those units should be valued, exchanged,
or governed. Any economic significance or monetary
behavior associated with #PEG units arises externally, at the
System level, and is not specified or assumed here.

The purpose of this document is not to propose an
improved monetary model, but to articulate a formally
minimal monetary infrastructure and to examine the
consequences of separating denomination and allocation
from justification and policy.

TABLE OF CONTENTS
Abstract
1. Introduction
Part I — Protocol and Engine Specification
2. Design Constraints
3. Protocol Fundamentals
4. Functional Components
5. Economic Properties
6. Access contexts and draw instantiation conditions
7. Comparative Positioning
Part II — Context and External Considerations
8. Post-Launch Operations and Non-Protocol Stakeholders
9. Pegged and the Economics of Chance
10. Use Cases and Distribution Dynamics
11. Limitations and Open Questions
12. Risk Surfaces and External Mitigation Patterns
13. Conclusion
Glossary

The #PEG Engine v4.3.13

20241231

1. INTRODUCTION

Most monetary systems begin by answering a question they rarely
make explicit: who is entitled to money, and why?

Work, risk, capital, trust, sovereignty, merit, or governance are
invoked in different combinations, but the gesture is always the
same. Money is issued, allocated, or stabilized on the basis of a
justification. Even systems that claim neutrality or inevitability
encode such justifications implicitly, as if money could not exist
without them.

The #PEG engine starts from a different premise. It asks whether
money can exist prior to entitlement—before value, policy, or
justification enter the picture at all. This is not an attempt to
improve money, correct it, or make it fairer. It is an attempt to
suspend the very questions that usually organize monetary
thought and to observe what remains.

The originality of the #PEG design lies neither in the use of
draws as such nor in the simulation of a lottery mechanism, but in
the conjunction of draw-based execution with a purely
denominative unit. The unit introduced by the Engine carries no
intrinsic economic meaning; it is not a claim, not an asset, not a
promise of redemption, not a representation of work, risk, or
merit. It is a unit of denomination only, and it is allocated
exclusively through execution constrained by chance. In doing so,
the engine separates denomination from valuation and allocation
from justification, producing monetary facts without embedding
an economic theory of worth.

This move places #PEG outside the lineage of existing monetary
forms. It does not compete with them, improve upon them, or
extend them. Instead, it intervenes at a lower level—below
economics, below policy, below entitlement—at the point where
money first becomes legible as a unit that can be counted,
allocated, and recorded at all. The distinctiveness of this
intervention is not incremental but categorical.

Five features make this conception of money incomparable:

First, denomination without valuation. The unit exists without
a theory of value attached to it. No purchasing power, peg, or
backing is defined or assumed.

Second, allocation without justification. Allocation occurs
without reference to identity, effort, capital, history, or merit.
Chance functions not as spectacle, but as a structural constraint
that prevents justificatory logic from entering the system.

Third, monetary facts without monetary policy. Outcomes are
produced and recorded, but no feedback, correction, or
stabilization mechanism is introduced. Measurement exists
without management.

Fourth, money whose meaning is externalized. The engine
produces outcomes, but it does not interpret them. Any economic

The #PEG Engine v4.3.13

20241231

meaning arises outside the system, through use, exchange, or
expectation.

Fifth, a new ontological category of money. What is
introduced is neither a currency, nor a stablecoin, nor a
commodity, nor a credit instrument. It is a minimal monetary
infrastructure that provides denomination, allocation, and finality
—and nothing else.

This allows a distinction to be drawn between two kinds of
monetary systems. Functional monetary systems define how money
should behave, be valued, and be managed. S#ructural monetary
systems define only the conditions under which something can
count as money at all. #PEG belongs to the latter category. It is
best described as a pre-economic monetary system: one that
establishes form without prescribing function.

None of this prevents #PEG units from acquiring monetary
significance beyond the engine. They may circulate, be priced, or
exhibit stable or quasi-stable behavior as a result of repeated use
and expectation. Such behavior may even display Markovian
characteristics, emerging from participation rather than design.
But these dynamics ate not specified, assumed, or governed here.
They belong to the system that forms around the engine, not to
the engine itself.

This document is therefore not a proposal for a better monetary
order. It is an invitation to consider a different one. Not a system
that tells us what money should do, but one that asks what money
is, once we stop telling it what it is for.

Terminological and symbolical conventions.

In this document, the term Engine refers exclusively to the
#PEG engine, the execution layer responsible for draw
instantiation, draw register resolution, and allocation recording.
The term Protocol refers exclusively to the Proof of Luck (PoL)
protocol, which defines execution admissibility under publicly
verifiable randomness. The term System refers to the #PEG
System as a whole, encompassing the engine, external access
contexts, intermediaries, interfaces, markets, and all social, legal,
and economic arrangements that arise around or beyond engine
execution. These terms are used consistently and are not
interchangeable.

The prefix “#” denotes a purely denominative unit produced by
the #PEG engine. It does not indicate a currency, asset, claim,
entitlement, backing, or redemption right, and carries no
economic or institutional semantics beyond denomination within
the Engine.

The generic currency sign “2” is not used, as it conventionally
denotes an unspecified currency and thus implies monetary status
or interchangeability that the #PEG engine explicitly does not
assume.

The #PEG Engine v4.3.13

20241231

The document is structured around a strict separation between
three conceptual layers:

The Proof of Luck (PoL) — Protocol

Proof of Luck (PoL) is a protocol that admits executions solely
on the basis of a verifiable random outcome produced according
to predefined rules.

At the protocol level, Proof of Luck (PoL) specifies a verifiable
randomness source and a deterministic rule for interpreting each
random value as an admissibility condition. Execution proceeds if
and only if this condition is satisfied.

The PoL protocol determines no subject, entitlement, or recipient.
It constrains execution by chance alone, without reference to
identity, effort, capital, history, reputation, or merit. Concretely,
the Protocol governs only whether a draw execution is admissible
under publicly verifiable randomness; it does not select
participants or determine allocation outcomes, which follow
mechanically from #PEG engine execution.

The #PEG Engine — Monetary Denomination & Allocation
Engine

The #PEG engine is the layer that produces monetary outputs by
denominating and allocating #PEG units through repeated PoLL
executions.

The engine operates over primitive denominative units (#PEG),
allocates fixed quantities of those units according to draw
outcomes, and records and exposes the resulting monetary facts
(e.g. allocation amounts, Pay out Ratio). It implements no
stabilization, redemption, valuation, synthetic derivation, or
corrective logic.

Its outputs are monetary facts, not economic interpretations.
They describe what was allocated, not what it is worth or how it
should be used.

The engine allocates monetary value without conducting
monetary policy.

The #PEG System — Total External Domain

The #PEG system comprises everything outside the Engine
boundary that interacts with, interprets, reacts to, or ignores
#PEG monetary outputs.

This includes, without limitation:

- participants, distributors, and interfaces,

- liquidity, exchange, and conversion practices,

- regulatory classification and institutional response,

- economic valuation, incentives, and behaviors,

- narratives, expectations, and cultural interpretations.

The #PEG Engine v4.3.13

20241231

The System may stabilize, exploit, reject, or reinterpret #PEG
outputs. None of these actions feed back into the PoL protocol or
the #PEG engine.

The System assigns meaning; the Engine does not.

This separation is constitutive/definitional. It determines not only
how the #PEG engine operates, but also how it must be
described. Any behavior not enforced by deployed code lies
outside the Engine’s boundary.

Purpose and Limits of This Document

This document is a specification. It does not advocate for
applications of #PEG, define policy objectives, or prescribe use
cases. It does not attempt to justify randomized allocation as fair,
efficient, or desirable. It specifies how the #PEG engine operates
and delineates the boundaries of that operation.

The document is intended to function simultaneously as:

- a standalone technical specification,

- a canonical boundary object for analytical work,

- and a reference for comparative analysis within a plural monetary
landscape.

All normative judgment, strategic interpretation, and institutional
response lies outside its scope.

PART I — PROTOCOL AND ENGINE SPECIFICATION
2. THE #PEG ENGINE’S DESIGN CONSTRAINTS

The #PEG engine is defined by a set of non-negotiable design
constraints. These constraints delimit what the Protocol and the
Engine can and cannot do. They are enforced structurally through
deployed contract logic and do not rely on governance, discretion,
interpretation, or external coordination.

Once a #PEG draw is deployed, these constraints apply
irrevocably for the lifetime of that draw.

2.1 Irrevocable Execution

#PEG draws are instantiated as smart contract instances deployed
without administrative privileges, pause mechanisms, or upgrade
paths. Once deployed, contract logic and configuration parameters
cannot be modified, reversed, or overridden.

There ate no privileged keys, emergency controls, or discretionary
intervention mechanisms. Execution proceeds deterministically

according to deployed code and supplied inputs.

If a draw is executed, its outcome is final.

The #PEG Engine v4.3.13

20241231

The Protocol does not support rollback, recovery, exception
handling, or post-execution modification. Any change to logic or
parameters requires the deployment of a new, independent draw
instance. Forks or parallel deployments operate independently and
have no effect on existing draws.

2.2 Absence of Governance

The #PEG engine does not include on-chain or off-chain
governance mechanisms. There are no voting rights, councils,
committees, parameter adjustment procedures, or adaptive control
processes.

The PoL protocol does not respond to participation levels,
economic conditions, valuation signals, or external feedback. Once
deployed, the Engine’s behavior does not evolve.

All coordination, interpretation, mitigation, or modification
occurs outside the Engine boundary and has no effect on
deployed draws.

2.3 Randomized Allocation

The #PEG engine allocates outcomes exclusively through publicly
verifiable random selection as defined by deployed draw logic.

All randomness used for #PEG draw execution is publicly
verifiable: any observer can independently verify the randomness
source, the admissibility rule, and the resulting execution decision
without permission, trust, or privileged access.

Allocation outcomes are independent of:
- participant identity,

- capital size,

- participation history,

- contribution frequency,

or prior draw outcomes.

Each draw constitutes an independent execution event. Neither
the PoL protocol nor the #PEG engine retain any historical state
beyond what is required for transaction execution and settlement.
This excludes any participant profiling, reputation history, or
cross-draw memory; only instance-local execution state and the
underlying ledger record petsist.

Random selection is applied mechanically and without
qualification. The Engine does not evaluate, weight, or rank
participants beyond the satisfaction of entry conditions.

2.4 Permissionless Initiation and Participation

Initiation of #PEG draws is permissionless at the Engine level.
Any address may deploy a draw by defining its entry conditions.

The #PEG Engine v4.3.13

20241231

Participation in #PEG draws is permissionless at the Engine level.
Any address may enter a draw by satisfying its deployment-defined
entry conditions.

No identity verification, whitelisting, eligibility filtering, or
reputational assessment is applied by the Proof of Luck (PoL)
protocol, and the #PEG engine records no reputational,
behavioral, or historical state beyond what is strictly required for
execution.

The #PEG engine assigns no roles, privileges, or tiers. All valid
allocation commitments are treated equivalently at execution time,
regardless of origin, aggregation, or submission pathway.

2.5 Fixed Operational Scope

The #PEG engine does not define objectives beyond the
execution of draws as specified at deployment.

The Engine does not target: price stability, capital preservation,
growth, efficiency, inclusion, or policy outcomes.

The Engine does not attempt to correct, optimize, or adapt its
behavior. Performance metrics and monetary outcomes are
observable consequences of execution, not operative targets.

Any interpretation of outcomes occurs outside the Engine’s
boundaries.

2.6 External Dependence

The #PEG engine depends on external infrastructure for
execution, including:

- the underlying blockchain,

- transaction inclusion mechanisms,

- verifiable randomness sources,

- and any external data referenced at execution time.

The Engine does not embed incentive mechanisms for
infrastructure provision. Continued operation depends on
voluntary, economic, or ideological support external to deployed
contracts.

The specification therefore includes #o liveness gnarantee:
continuation is an external contingency, not a protocol property.

Failure, degradation, or withdrawal of supporting infrastructure
may prevent draw execution or settlement. The Engine includes
no internal remediation or substitution mechanisms.

3. #PEG ENGINE FUNDAMENTALS

The #PEG engine operates through a limited set of execution
primitives. These primitives define how draws are instantiated,
how participation is handled, and how outcomes are produced

The #PEG Engine v4.3.13

20241231

and settled. The Engine includes no auxiliary logic beyond what is
required for draw execution.

This section describes only those elements that are enforced
mechanically by deployed contract logic.

3.1 Engine Preconditions (Standing Conditions)

The #PEG engine has no bootstrap phase: it defines no genesis
state, initial allocation, privileged participants, or system-level
activation event. Any preparatory deployment, testing, or eatly
draw execution occurs outside the engine boundary and confers
no structural privilege.

The #PEG engine exists as a standing allocation logic whose
execution is instantiated only through the deployment of
individual draws. #PEG draw instantiation therefore marks the
beginning of a draw lifecycle, not the activation of the engine
itself.

The instantiation of any #PEG draw presupposes:

(i) an execution environment capable of deploying and executing
irrevocable smart contracts;

(ii) the availability of a publicly verifiable randomness mechanism
compatible with PoL. protocol standards;

(iii) a published draw contract specification defining entry
handling, execution timing, randomness consumption, payout
rules, and wallet-addressed settlement.

(iv) a #PEG draw register for each draw instance: a bounded,
Engine-internal data structure that aggregates all valid entries and
their associated #PEG-denominated allocation commitments
submitted prior to execution. The draw register exists solely for
the duration of the draw lifecycle and is exhaustively resolved at
execution time. It does not custody balances or assets; it records
prospective allocations that become effective only upon execution.

Because the draw register records only non-transferable allocation
commitments and not spendable balances, it is structurally non-
lootable: no #PEG units can be spent without allocation via
execution.

(v) #PEG units. A #PEG unit is a purely denominative unit in
which allocation commitments and resulting allocations are
expressed. Outside draw execution, #PEG may circulate as a
conventional monetary reference within external systems, but such
circulation does not imply backing, redemption, custody, or
recognition by the #PEG engine.

These preconditions are necessary for #PEG draw instantiation

but do not guarantee it. Any decision to instantiate a draw and
coordinate participation occurs outside the Engine boundary.

The #PEG Engine v4.3.13

20241231

3.2 #PEG Draw Instantiation

Each draw is instantiated as an independent smart contract
instance and thereby initiates an individual draw lifecycle within
the #PEG engine.

At deployment, a draw is configured with a fixed set of
parameters, including execution timing, entry conditions, payout
structure, and denomination identifiers. These parameters are
supplied as configuration inputs and are immutable after
deployment.

Draw instances are isolated. There is no shared mutable state
across draws beyond the underlying blockchain ledger. No draw
inherits parameters, privileges, or outcomes from any prior
instance.

Once instantiated, a #PEG draw executes exactly once.
3.3 Entry and Allocation Commitment

Participation in a #PEG draw requires submission of an
allocation commitment denominated in the unit specified at
deployment.

Entry conditions are defined at draw instantiation and applied
uniformly to all participants. The Engine does not impose limits
on:

- the number of participants,

- frequency of participation,

- aggregation of entries,

- or submission pathways.

Entries submitted directly by participants and entries submitted
through intermediaries are treated equivalently by the #PEG
engine at execution time; any differences in access, aggregation, or
post-execution handling occur outside the Engine boundary.

Entries that do not satisfy deployment-defined conditions are
rejected without exception.

3.4 Random Selection

Winner selection is performed using publicly verifiable
randomness supplied to the execution environment.

Selection is independent of:

- participant identity,

- allocation commitment size,
- participation history,

- prior outcomes.

The PoL protocol does not weight entries, apply multipliers, or
retain state influencing probability. Each valid entry is subject to

the same selection logic as defined by the #PEG draw parameters.

The #PEG Engine v4.3.13

20241231

Random selection is executed mechanically. Outcomes cannot be
predicted, influenced, or revised by #PEG engine logic.

3.5 Execution Finality

Upon execution, a #PEG draw register resolves immediately at
the Engine level, with no intermediate or deferred state.

Payouts are allocated strictly according to the deployed rules.

In this document, “allocation” refers to the assignment of #PEG-
denominated settlement outcomes to wallet addresses under
#PEG draw rules; selection determines which entries receive
those outcomes.

In this document, “settlement” refers exclusively to the Engine-
level recording of allocation outcomes to wallet addresses. It does
not imply economic realization, liquidity, availability, or post-
allocation handling, all of which occur outside the Engine
boundary.

All #PEG engine-level settlements are effected by assigning
outcomes to wallet addresses. Wallets are treated as addressable
containers within the execution environment and are not
interpreted as identities, beneficiaries, or subjects.

There is no post-execution phase. The Engine does not permit:
appeals, corrections, retries, compensatory actions, or
discretionary intervention.

Execution finality is defined solely at the engine level and does not
imply immediate settlement, redistribution, or availability in
external systems.

Executed draws terminate without residual control surfaces. All
outcomes are final.

A draw lifecycle is finite and reaches a terminal state at its
scheduled execution time. Terminal resolution may occur either
through execution, producing allocation outcomes, or through
cancellation, producing no allocations. Finality applies to both
terminal paths: once a draw has executed or been cancelled, no
further state transitions occur within the Engine.

3.6 Absence of Adjustment Mechanisms

The #PEG engine includes no mechanisms for price targeting,
supply modification, parameter tuning, or adaptive response.

The protocol does not monitot:
- external markets,

- participation trends,

- valuation signals,

- ot system-level behavior.

The #PEG Engine v4.3.13 10

20241231

There is no notion of deviation, correction, or stabilization within
the #PEG engine execution logic.

Each draw executes independently under identical rules.
3.7 Draw Lifecycle Termination
After execution, #PEG draw contracts become inert.

No state is preserved beyond transaction records required for
settlement and verification. The Engine does not include renewal,
rollover, continuation, or memory mechanisms.

If required inputs are unavailable at execution time, the draw does
not settle; no alternative execution path exists within the instance,
and any resolution beyond the deployed rules lies outside the
Engine boundary.

Repeated use of the #PEG engine requires repeated instantiation
of new, independent draws.

Finality in the #PEG engine denotes irreversibility of state;
termination denotes lifecycle completion. In the Engine, all
terminal states are final, but finality refers to outcome
irreversibility, not merely to lifecycle end.

A draw reaches finality either through execution, producing
allocation outcomes, or through cancellation, producing no
allocations. In both cases, finality signifies that no further
execution, reversal, or state transition is possible within the
Engine.

3.8 The #PEG Engine Process (Single Draw Lifecycle)

This subsection defines the #PEG engine process for a single
draw lifecycle, from draw configuration through terminal
resolution. The process is strictly finite: every draw reaches a
terminal state at its scheduled execution time, and no draw may
terminate with outstanding commitments recorded in the draw
register.

Steps 1 through 5 define the pre-execution phase of a draw.
During this phase, a draw is configured, entries are submitted and
validated, the draw register is aggregated, and the register is closed
at the scheduled execution time. No execution logic, randomness
consumption, or allocation occurs prior to register closure.

At the scheduled execution time, the Engine attempts to acquire
the publicly verifiable randomness required for execution (Step 6)
and performs the Proof of Luck admissibility check (Step 7). This
check determines only whether draw execution may proceed; it
does not select participants or allocation outcomes.

No postponement or retry logic exists within the Engine. The
admissibility check constitutes a hard gate: at the scheduled

The #PEG Engine v4.3.13 11

20241231

execution time, the draw transitions immediately to a terminal
resolution path.

If execution is admissible, the Engine resolves the draw
deterministically using the closed register and the acquired
randomness (Step 8A). Allocation outcomes are produced

mechanically, recorded during settlement (Step 9A), and the draw

register is cleared as commitments ate consumed by execution
(Step 10A). The draw then reaches the terminal state Executed.

If execution is not admissible at the scheduled execution time, the
draw is immediately cancelled (Step 8B). Cancellation is terminal
and produces no allocation outcomes.

Upon cancellation, the engine attempts to release all recorded
allocation commitments to their originating submission wallets
(Step 9B), restoring the corresponding #PEG units to the
externally transferable state. “Release” denotes a deterministic
reversal of a prior Engine-internal recording, not a right,
guarantee, or entitlement.

If commitment release cannot be performed deterministically, the
engine burns the unteleasable commitments (Step 10B.2). Burning
is non-discretionary and final, and serves solely to enforce draw
termination and register clearance.

In all terminal cases—execution, cancellation with trelease, or

cancellation with burn—the draw register is cleared and contains

no remaining commitments.

Step

Process Step
Title

Draw
Configuration

Entry
Submission

Entry
Validation

Register
Aggregation

Register
Closure

Randomness
Acquisition

PoLL

The #PEG Engine v4.3.13

Inputs Engine Action

Initiator parameters

(denomination, draw Records draw
type, scheduled execution configuration and
time, caps, aggregation opens draw for
mode, acceptance scope, entry
identifiers/metadata)

Accepts valid
entries under
configuration
constraints

Entries submitted (direct
ot mediated) with inlay /
commitment amount

Validates format
and acceptance
constraints

Entry fields, caps,
format, admissibility
preconditions

Aggregates entries
according to
configured
aggregation mode

Accepted entries

Scheduled execution time Closes register to

reached new entries

Attempts to retrieve
randomness
required for
execution at
scheduled time

Publicly verifiable
randomness source

Randomness proof + Determines

Output / State

Change

Draw instance
created; register
opened

Entry recorded in

draw register

Accepted entries

retained; invalid
rejected

Consolidated
register state

Register becomes
immutable for this

draw

Notes / Invariants

No execution logic, valuation
logic, or entitlement logic
created here

Engine records submission
wallet as the sole provenance
handle

Validation is not
identity/reputation filtering; it
is structural admissibility

Aggregation affects register
representation only, not
execution semantics

Closure is mechanical at
scheduled time

Randomness proof No postponement window; this
present OR absent is a hard gate

Admissible or

12

PoL. determines no

20241231

Process Step
Title
Admissibility
Check

Step

Execution (if

8A admissible)

Settlement by
Allocation (i
excectted)

9A

Register
Clearance (i
excecuted)

10A

Hard
Cancellation
(if not
admissible)
Commitment
Release
Attempt (if
cancelled)
Register
Clearance by
Release (7f
release succeeds)

8B

9B

10B-1

Register
Clearance by
Burn (if release

Jails)

10B-2

The #PEG Engine v4.3.13

Inputs

deterministic
consumption rule

Closed register +
randomness

Allocation mapping

Register + settlement
result

Closed register + failed
admissibility

Register entries +
submission wallets

Release result

Unreleasable
commitments

Engine Action

whether execution
is admissible

Resolves draw
deterministically
and computes
allocations

Records allocations
to destination
wallets

Clears register
commitments as
consumed by
execution

Marks draw
Cancelled
immediately

Attempts to release
commitments back
to originating

submission wallets

Clears register
commitments

Burns unreleasable
commitments
deterministically

Output / State
Change

Not admissible

Allocation
mapping produced

Allocations
finalized; draw
marked Executed

Register becomes
empty

Cancellation event
recorded

Release succeeds
OR fails

Register becomes
empty; draw
remains Cancelled

Register becomes
empty; draw
marked Cancelled
(Burn)

13

Notes / Invariants

subject/recipient; it gates
execution only

Allocation outcomes atre a
mechanical consequence of
execution

Execution finality is immediate
at this step

Register-zero invariant
satisfied

Cancellation is terminal at
scheduled time

Release restores transferability
of #PEG balances at
submission wallets

Register-zero invariant
satisfied; no allocations exist

Burn is non-discretionary,
terminal, and recorded
explicitly

20241231

Table 1 — #PEG Engine Process (Single Draw Lifecycle)

The table above transposes into the following process workflow
chart.

1
’ Draw Configuration

2.
Entry Submission

v
3.
Entry Validation
v
4,
Register Aggregation
v

5.
Register Closure

v

6.
Randomness
Acquisition

T T

p / \\ Not
8A Admissible Aoy . admissible
- — missibi pe—
Execution L Check P

~—"

8.A.
Hard Cancellation

/ \
10B.1. Success - 9A
Register Clearance Commitment >
by Release g Release

10.A. T~
Register Clearance T

\ J Failure
10.B.2.
Register Clearance
by Burn

9.A.
Settlement by
Allocation

Explicit Non-Steps (Boundary Clarification)

The following are not #PEG engine process steps and must not
be represented as such:

- denomination (property, not a step)

- aggregation (system-level coordination)

- observability / PoR reporting (non-operative)

- distribution, liquidity, valuation, conversion

- governance, stabilization, redemption

- incentive provision or liveness guarantees

All of the above belong to the #PEG system, outside the Engine
boundary.

4. #PEG ENGINE FUNCTIONAL COMPONENTS

The #PEG Engine v4.3.13 14

20241231

The functional components described in this section realize the
execution sequence specified in §3.8 and do not introduce
additional steps, logic, or control beyond that canonical process.
The #PEG engine relies on a limited set of functional
components required for #PEG draw execution. These
components perform specific operational roles necessary for
deployment, execution, and settlement. The PoL protocol does
not evaluate, optimize, or coordinate their performance beyond
successful availability at execution time.

This section describes only those components insofar as they are
required for full draw execution.

4.1 Smart Contract Execution

Deployment of a #PEG draw contract instantiates a single #PEG
draw lifecycle; it does not activate, configure, or modify the
#PEG engine, which remains invariant across draws and exists as
a standing allocation logic prior to and independently of any
specific draw.

Each draw is instantiated as a separate contract instance with fixed
configuration parameters defined at deployment. Contract
execution follows the rules encoded in the deployed bytecode.

The #PEG engine does NOT include:
- administrative functions,

- override permissions,

modification interfaces,

- upgrade paths.

Each #PEG draw execution proceeds deterministically given valid
inputs at runtime. Once deployed, the contract logic remains
unchanged for the lifetime of the draw.

4.2 Randomness Source

The #PEG engine relies on an external soutce of publicly
verifiable randomness to determine draw outcomes.

Randomness is supplied to the execution environment and
consumed by the smart contract according to deployed rules. The
Engine does not generate randomness internally.

The Engine verifies randomness only insofar as required for
execution correctness within the execution environment. It does
not assess statistical quality, provenance, or external trust

characteristics beyond successful verification at execution time.

If publicly verifiable randomness is unavailable or invalid at
execution time, the draw fails without fallback or substitution.

4.3 External Data References

Certain draw parameters may reference external data values
supplied at execution time.

The #PEG Engine v4.3.13 15

20241231

Such references may include denomination identifiers or
execution-related values provided through external data sources
accessible to the execution environment.

External data references, where used, parameterize execution of a
specific #PEG draw instance; they do not provide price feeds,
parity enforcement, or stabilization inputs.

The #PEG engine:

- consumes referenced data as supplied,

- does not validate correctness beyond syntactic or verification
checks required for execution,

- does not monitor persistence, continuity, or accuracy of external
data sources.

Failure or inconsistency of external data sources results in
execution failure or degraded behavior without protocol-level
response.

4.4 Infrastructure Dependencies

At execution time, the engine treats all valid entries equivalently by
resolving the draw register without regard to entry provenance
(direct or intermediary).

The #PEG engine depends on underlying public blockchain
infrastructure for:

- transaction inclusion,

- state persistence,

- and execution ordering,

The Engine does not embed incentive mechanisms for:
- block production,

- transaction prioritization,

- network maintenance,

- or data availability.

Continued operation depends on the ongoing availability of
external infrastructure maintained for reasons independent of the
Engine. Loss or degradation of such infrastructure may prevent
draw execution or settlement without internal mitigation.

In the event of draw cancellation, any release of allocation
commitments is performed exclusively to the originating
submission wallets; where entries are aggregated or mediated,
downstream redistribution remains entirely external to the #PEG
engine.

4.5 Distributors
Distributors facilitate access to #PEG draws externally by

aggregating entries, providing interfaces, or coordinating
participation.

The #PEG Engine v4.3.13 16

20241231

The #PEG engine does not recognize distributors as a distinct
class. Distributors do not receive Engine-level privileges and are
subject to the same execution rules as any other participant.

All allocation commitments submitted through distributors are
treated equivalently at execution time. Distributor behavior occurs
entirely outside the Engine boundary and does not affect
execution logic.

5. MONETARY PROPERTIES

The monetary behavior associated with the #PEG engine arises
from repeated draw execution under fixed PoL protocol
constraints. The Engine itself has no defined economic objectives,
targets, or optimization criteria.

All monetary quantities in this section are #PEG-denominated
expressions of allocation commitments (pre-execution) or
recorded allocations (post-execution).

All properties described in this section are descriptive and
observable. They are not operative and do not influence PoLL
protocol behavior.

5.1 Allocation Commitment and Draw Settlement Allocation

Each draw records participant allocation commitments
denominated in the #PEG unit specified at deployment.

The total allocation commitment represents the maximum
amount available for allocation, subject to engine-level execution
frictions; system-level frictions affect participant outcomes only
outside the #PEG engine. The Engine allocates a portion of the
total allocation commitment to selected participants according to
the deployed payout rules.

No additional issuance, leverage, or reserve supplementation
occurs. #PEG draw settlement allocation is strictly bounded by
the allocation commitment provided for that draw.

5.2 Denomination as Reference Frame

#PEG draws are denominated in reference units identified at
deployment (e.g. €PEG, $PEG, AUPEG - the latter being the
denomination for gold).

Denomination functions as a reference frame for accounting and
comparison. It does not constitute:

- a claim on reserves,

- a redemption guarantee,

- or an enforceable parity with any external asset or currency.

Denomination is not a monetary peg: the engine enforces

reference-formatting only and makes no commitment to parity,
redemption, or market price alignment.

The #PEG Engine v4.3.13 17

20241231

The #PEG engine enforces denomination syntactically. It does
not enforce monetary equivalence.

Denominated outcomes produced by #PEG draw execution are
therefore legible in reference terms without being stabilized or
defended by the Engine.

5.3 The Pay out Ratio (PoR): Definition and Components

The Pay out Ratio (PoR) of a #PEG draw is an ex post
observable ratio expressing the proportion of #PEG-
denominated allocation commitments that result in allocations
following draw execution. The PoR is computed solely from facts
produced by draw register resolution and has no meaning prior to
execution.

For a given draw, the PoR is defined as the ratio between:

- the total #PEG-denominated allocations recorded at execution,
and,

- the total #PEG-denominated allocation commitments recorded
in the draw register prior to execution, after deduction of engine-
level execution frictions.

Engine-level execution frictions are not post hoc deductions from
participant balances; they are execution costs that bound the
maximum allocable amount during settlement.

The PoR is defined only for draws that reach execution; cancelled
draws produce no allocation outcomes and therefore no PoR.

5.4 Engine and System-level #PEG Draw Frictions

Engine-level execution frictions are costs incurred strictly within
the #PEG engine during draw execution. These may include
protocol-defined execution costs, computational costs, and peg
maintenance costs where applicable. Engine-level frictions are
applied mechanically and uniformly and are independent of draw
outcomes, participant identity, or access context.

System-level frictions are costs incurred outside the #PEG engine,
including but not limited to access fees, intermediary
commissions, custody costs, conversion spreads, taxation,
regulatory compliance, or liquidity constraints. System-level
frictions do not enter PoR computation and have no effect on
draw execution, allocation, or Engine-level outcomes.

The PoR reflects only the internal efficiency of a #PEG draw
execution within the Engine and does not represent participant-
level profitability or realized economic return; such participant-
relative outcomes are captured, where relevant, by Net Draw
Return (NDR), a system-level analytic external to the engine (see
section 10).

5.5 The Pay out Ratio (PoR): Calculation and Reporting

The #PEG Engine v4.3.13 18

20241231

For each draw, the #PEG engine reports a Pay out Ratio (PoR) as
defined in 5.3. The reported PoR is observable post-execution and
does not influence subsequent draw execution or configuration.

The PoR is:

- calculated post-execution,
- observable and reportable,
- non-operative.

The #PEG engine does not act on PoR values. No minimum,
maximum, or target ratio is defined. Previous PoRs do not
influence future draws or execution logic.

5.6 Execution Costs and Engine-level Execution Frictions

Execution of a #PEG draw incurs Engine-level execution
frictions that reduce the amount of commitment allocations
available for settlement allocation.

Engine-level execution frictions refers to the aggregate of such
costs and may include:

(i) Draw execution costs

Costs required to execute the #PEG draw according to the
protocol specification, including:

- smart-contract execution costs,

- transaction processing costs,

- state transition costs required for draw register resolution.

(if) Randomness acquisition and consumption costs

Costs incurred to obtain, verify, and consume publicly verifiable
randomness at execution time, including:

- oracle invocation costs,

- cryptographic verification costs,

- randomness beacon interaction costs (where applicable).

(iti) Allocation recording costs

Costs requited to:

- record allocation outcomes,

- assign allocations to destination wallets,
- finalize execution state irreversibly.

(iv) Peg maintenance costs (engine-internal)

(Contingent, but PoR-relevant when present)

Costs incurred by the engine to maintain the internal
denominative consistency of #PEG units with their reference
(e.g. basket, index), including:

- oracle reading costs for reference values,

- protocol-defined adjustment mechanics (if any).

(v) Engine-internal accounting or verification overhead
Minimal costs associated with:

- internal consistency checks,

- admissibility verification,

- draw register integrity enforcement.

The #PEG Engine v4.3.13 19

20241231

The above costs are intrinsic to execution, are strictly limited to
what is required for randomness consumption and allocation
finality, and exclude any post-execution handling or processing.

The Protocol does not expose engine-level execution frictions as
standalone values; such frictions are accounted for implicitly by
reducing the allocable #PEG amounts at execution and are
reflected only in post-execution allocation outcomes and in the
reported Pay out Ratio (PoR). The #PEG engine does not allocate
#PEG units to infrastructure providers; any compensation of
execution infrastructure occurs outside the engine and does not
form part of draw settlement.

Only engine-level execution frictions enter PoR computation. All
system-level frictions are external to the #PEG engine and affect
participants exclusively outside draw execution. These external

frictions will be discussed in the second part of this specification.

5.7 Absence of Economic Controls
Only the PoR and allocations are observable.

The #PEG engine does not include mechanisms for controlling:
- price,

- supply,

- demand,

- participation behavior,

- or denomination alignment.

The #PEG engine does not intervene to increase efficiency,
smooth outcomes, or stabilize observed metrics.

All economic effects result from voluntary #PEG draw initiation
and participation and other external conditions.

5.8 Observability Without Intervention

All engine-level monetary facts produced by #PEG draw register
resolution (including allocation amounts and PoR) are publicly
observable.

Participants and external observers may compare:

- participation levels,

- draw outcomes,

- PoR values,

- and draw configurations across independent draw instances.

The Engine does not interpret these observations. Any decision-
making based on observed outcomes occurs entirely outside its
boundary.

5.9 Denomination Persistence as External Condition
Repeated #PEG draws denominated in the same reference unit

may, under favorable external conditions, produce outcomes that
are treated as economically legible over time.

The #PEG Engine v4.3.13 20

20241231

Such persistence:

- is not enforced by the #PEG engine,

- Is not guaranteed,

- and may degrade without corrective response.

The Engine does not defend denomination. It exposes the cost of
doing so externally.

6. ACCESS CONTEXTS AND DRAW INSTANTIATION
CONDITIONS

#PEG draws may be accessed in a variety of external contexts
depending on infrastructure availability, access methods, and
organizational arrangements. Draw instantiation additionally
presupposes the standing preconditions described in Section 3.1.
The #PEG engine does not prescribe, privilege, or adapt to any
particular access context.

All draw instantiations follow the same execution rules once

deployed.
6.1 Direct Participation

Participants may enter #PEG draws directly by submitting
transactions that satisfy the draw’s deployment-defined entry
conditions.

Direct participation requires access to the undetlying public
blockchain and the ability to interact with deployed draw
contracts.

All valid entries are processed uniformly at execution time.
6.2 Non-Recognition of Access Contexts

The #PEG engine does not encode assumptions about
participant intent, economic motivation, or usage patterns.

The Engine neither recognizes nor evaluates access contexts. All
variation in usage arises from external organization and
participant behavior outside the Engine boundary.

6.3 #PEG Draw Initiation Parameters
A draw initiator may specify only the following parameters.

(@) Draw denomination

- Parameter: Denomination unit (#PEG instance, e.g. #PEG,
AUPEG, $PEG)

- Scope: Engine

- Effect: Determines the #PEG unit in which allocation
commitments and allocations are expressed.

- Constraint: Does not imply valuation, backing, or exchange rate.

(ii) Draw execution time

The #PEG Engine v4.3.13 21

20241231

The execution time is a hard, non-deferable boundary: at this time
the draw transitions immediately to a terminal resolution, either by
execution or by cancellation.

The #PEG engine does not implement postponement, retry, ot
grace-period logic with respect to execution time.

- Parameter: Scheduled execution time (or execution window, if
supported)

- Scope: Engine

- Effect: Determines when the #PEG draw register is resolved.

- Constraint: Does not affect randomness, allocation logic, or

eligibility.

(iif) Draw type

- Parameter: Draw type identifier (e.g. hope, ambition, greed)
- Scope: Engine

- Effect: Selects a predefined allocation profile.

- Constraint: Draw types ate fixed templates; initiators cannot
modify their internal structure.

(iv) Entry acceptance conditions

- Parameter: Entry acceptance rules (open / restricted / mediated)
- Scope: Engine boundary (enforced externally if needed)

- Effect: Determines which entries may be admitted into the draw
register.

- Constraint: Cannot discriminate at execution time; enforcement
occufs prior to entry.

(v) Entry aggregation rules

- Parameter: Aggregation mode (individual entries vs batched
entries)

- Scope: Engine

- Effect: Determines how entries are recorded in the draw register.
- Constraint: Aggregation does not affect execution-time
equivalence.

(vi) Draw instantiation limits

- Parameter: Maximum total allocation commitment (cap) and/or
maximum number of entries

- Scope: Engine

- Effect: Bounds the size and cap of the #PEG draw register.

- Constraint: Does not affect selection probability or allocation

rules.

(vii) Draw identifier and metadata

- Parameter: Draw identifier and optional descriptive metadata
- Scope: System-facing

- Effect: Enables external referencing, indexing, and
interpretation.

- Constraint: Metadata has no semantic effect on execution or
allocation.

The parameter set above is exhaustive. Any configuration not
listed here occurs outside the #PEG engine and has no effect on

draw execution, allocation, or on the PoR.

(viit) Explicit non-parameters

The #PEG Engine v4.3.13 22

20241231

The draw initiator cannot specify or influence:

- randomness source or randomness outcome,

- admissibility rules under Proof of Luck,

- selection probabilities,

- allocation mechanics beyond predefined draw types,
- Pay out Ratio (PoR),

- engine-level execution frictions,

- system-level frictions,

- execution finality conditions,

- post-execution allocation handling.

7. COMPARATIVE POSITIONING

The #PEG engine operates within a plural monetary landscape
composed of heterogeneous allocation and issuance architectures.
It does not assume replacement, convergence, ot institutional
adoption. The Engine coexists with other monetary and crypto-
economic systems without requiring interoperability, coordination,
or recognition.

This section situates #PEG engine relative to other monetary and
protocol forms by describing differences in allocation logic,
stabilization mechanisms, and control surfaces. No hierarchy,
normative ranking, or performance claim is implied.

7.1 Coexistence Within a Plural Monetary Landscape

Contemporary monetary systems operate in parallel across
jurisdictions, infrastructures, and institutional arrangements. No
single architecture satisfies all economic functions or use cases.

Fiat currencies are issued administratively and derive validity from
state authority, legal tender status, and monetary policy
enforcement. Custodial stablecoins maintain reference value
through reserve backing and redemption guarantees. Central bank
digital currencies (CBDCs) extend state money into regulated
digital form. Community-based credit instruments rely on social
coordination and trust. Scarcity-based crypto-assets constrain
issuance through protocol-defined limits.

The #PEG engine does not replicate these models.

Within the Engine, #PEG-denominated allocation commitments
are allocated only through draw execution. Participation is
permissionless and non-selective. The Engine records no state
beyond what is required for execution and settlement.

#PEG therefore constitutes a distinct design category: a “non-
governed, draw-based denominated monetary unit allocation
engine” whose operation depends solely on contract execution

and continued access to external infrastructure.

7.2 Comparative Overview of Monetary Architectures

The #PEG Engine v4.3.13 23

20241231

The table below summarizes structural differences between
#PEG and other monetary or protocol architectures. It is
intended as a classificatory aid only.

Primary Allocation Source of
Monetary / Protocol g o
. / Maintenance Stability or
Architecture . .
Logic Legitimacy
- . Legal tender
Administrative 5
. . status, chartal
Fiat Currency issuance by state
. charactet,
authority

Asset-Backed

Minting against

monetary policy

Redemption
guarantees and

Governance / Control Pegged’s Structural

Layer

Central bank and
political institutions

Issuer governance,

Stablecoins custodial reserves . compliance obligations
reserve audits
. . Supply adjustment ~ Market incentives Parameter updates
Algorithmic uppYy ad) o p ’
. via feedback and algorithmic ~ governance
Stablecoins .) ; \
mechanisms tuning interventions
Costly
. Proof-of-Work Y Informal governance
PoW Scarcity . . verification and . .
issuance with capped . via forks and miner
Protocols ($BTC) scatcity o
supply . coordination
constraints

Programmable

Execution Layer

Fee-based issuance
with evolving

Network usage,
smart contract

Protocols (SETH) monetary policy execution
Sovereign

Central Bank Digital State-issued digital — guarantee and

Currencies (CBDCs) ledger entries policy
enforcement

Community Credit

Mutual or trust-

Social obligation
and reputational

Active protocol
governance and
upgrades

Full administrative and
regulatory control

Informal governance

Instruments based issuance and social coordination
enforcement
Random
. . Observable
Denominated Unit Irrevocable, random . None (post-
. . . behavior and Pay
Allocation Protocols allocation via draws deployment)

(#PEG)

out Ratios (PoR)

7.3 Absence of Stabilization and Adjustment

The #PEG engine does not include mechanisms for price
targeting, supply adjustment, or corrective intervention.

Unlike algorithmic stabilization models, the Engine does not
attempt to maintain parity through feedback loops, arbitrage
incentives, or governance-mediated tuning. There is no notion of
deviation or correction within the execution logic.

Observable metrics such as the PoR expose execution efficiency
but remain non-operative. They do not trigger protocol response.

The #PEG Engine v4.3.13 24

Difference

No issuer authority; no
legal mandate

No reserves; no
redemption promise

No adjustment logic;
no feedback loops

No work, no scarcity,
no cumulative
advantage

No protocol
governance or upgrade

path

No administrative
issuance; no
compliance/surveil-
lance layer; no
discretionary control

No trust or obligation
layer

Outcome allocation by
chance; indifference by
design

20241231

7.4 Denomination and Observability

As described in §5.7, the #PEG engine does not enforce or
defend denomination persistence over time. #PEG draws are
denominated in reference units (e.g. €PEG, $PEG, AGPEG).
These units do not represent claims on reserves and are not
redeemable at fixed rates.

Denomination functions as a reference frame for participation
and accounting. Each completed draw reveals the effective
allocation achieved in that unit through the reported PoR.

If repeated draws remain efficient over time, denominated
outcomes may be treated as economically legible in use. If
efficiency degrades, no compensatory mechanism exists. The
#PEG engine neither guarantees nor defends denomination.

7.5 Scope and Limits

The #PEG engine introduces a draw-based allocation architecture
that operates alongside existing monetary systems.

It does not replace other forms of money, does not coordinate
with them, and does not embed assumptions about adoption or
dominance.

The Engine defines a fixed structure for allocation by chance. Its
operation is independent of monetary issuer authority,
governance processes, or policy objectives. Continued operation
depends solely on voluntary initiation and participation and
external infrastructure availability.

PART II — CONTEXT AND EXTERNAL
CONSIDERATIONS

8. POST-LAUNCH OPERATIONS AND NON-
PROTOCOL STAKEHOLDERS

The #PEG engine does not define post-deployment operations
beyond draw settlement. Once deployed, draw contracts execute
autonomously and terminate without residual control surfaces.

Any Systemic activity occurring after deployment—including
access facilitation, coordination, interpretation, or mitigation—
takes place entirely outside the Engine boundary and does not
modify PoLL protocol behavior.

The #PEG engine provides no guarantees regarding participation
outcomes, execution success, or recovery of commitments beyond
the constraints explicitly specified at the engine level. Any
expectations of continuity, compensation, retry, or mitigation arise
solely within the surrounding system context and are not
enforced, assumed, ot recognized by the engine itself.

The #PEG Engine v4.3.13 25

20241231

The following sections describe #PEG System-level conditions
under which the Engine may be accessed, instantiated, or
repeatedly engaged; none of these conditions are specified,
recognized, or enforced by the Engine itself.

8.1 Mediated Access, Distributors, and Interface Providers

Access to #PEG draws may be facilitated by external actors
providing interfaces, aggregation services, custodial access, or
coordination mechanisms. Such actors may include web
applications, mobile tools, custodial services, or community-based
organizers.

These intermediaries may aggregate entries, manage user
experience, provide informational framing, or impose access
conditions and fees. Any such conditions, restrictions,
representations, or costs operate entirely outside the #PEG
engine.

The #PEG engine does not recognize mediated access,
distributors, or interface providers as distinct or privileged
operational categories. Entries submitted through intermediaries
are treated identically to direct entries at execution time, and
intermediary behavior does not affect draw execution or outcome
determination.

8.2 Distribution Environments

#PEG draws may be instantiated in environments with varying
levels of infrastructure reliability, regulatory oversight, and
participant familiarity with digital systems.

The #PEG engine does not adapt to environmental conditions.
Execution behavior remains invariant across geographic,
regulatory, or infrastructural contexts. Differences in outcomes
arise from external conditions rather than Engine response.

8.3 Repeated Instantiation

The #PEG engine does not include mechanisms for recurring or
continuous draws.

Each #PEG draw requires explicit instantiation as a separate
contract instance. No state, privilege, or parameter inheritance
occurs across draws.

Repeated use of the #PEG engine therefore depends on external
organization and coordination.

8.4 Infrastructure Operators

Post-deployment operation of #PEG draws depends on
continued availability of underlying infrastructure, including:
- blockchain networks,

- transaction relayers,

- randomness providers,

- and external data sources referenced at execution time.

The #PEG Engine v4.3.13 26

20241231

Infrastructure operators may maintain these services for
economic, ideological, or incidental reasons. The #PEG engine
does not coordinate with, incentivize, or compensate such
operators.

Withdrawal or degradation of infrastructure services may prevent
draw execution or settlement without triggering any protocol-level
response.

8.5 Observers and Analysts

The #PEG engine produces publicly observable execution data
(see section 5.0).

External observers may analyze this data to assess participation
efficiency, denomination behavior, or usage patterns.

Such analysis has no effect on Engine behavior. The Protocol
neither incorporates external feedback nor responds to
interpretation, critique, or strategic behavior inferred from
observed data.

Operational dependencies required for draw execution are
evaluated strictly at the scheduled execution time. The Engine
does not implement retry, delay, or fallback mechanisms in
response to temporary unavailability of external services. If
required external inputs are not available at execution time,
execution does not occut.

8.6 Absence of Operational Authority

No actor possesses authority to intervene in #PEG engine
operation once a draw is deployed.

There are: no administrative roles, no escalation procedures,
no discretionary powers, and no post-deployment controls
embedded in the Engine.

Any coordination, mitigation, or adaptation in response to
outcomes occurs outside the Engine boundary and has no effect
on existing or future #PEG draw execution logic.

8.8 System-level frictions

These frictions occur outside the #PEG engine. They may affect
participants economically but never affect draw execution or PoR
computation.

(i) Access and interface costs
- front-end usage fees,

- API access fees,

- wallet service fees,

- UX-related charges.

(i) Intermediary and distributor fees

The #PEG Engine v4.3.13 27

20241231

- broker commissions,

- initiation fees,

- aggregator margins,

- batching or facilitation fees,
- distribution spreads.

(i) Custody and wallet costs
- custodial wallet fees,

- safekeeping charges,

- key-management services,
- account maintenance costs.

(iv) Conversion and liquidity frictions
- DEX slippage,

- CEX spreads,

- order-book depth constraints,

- on/off-ramp conversion fees,

- volatility during conversion.

(v) Regulatory and compliance costs

- KYC/AML compliance expenses,

- reporting obligations,

- jurisdiction-specific licensing or taxation,
- enforcement-related delays or penalties.

(vi) Temporal and settlement delays
- exchange settlement delays,

- withdrawal waiting periods,

- batching or clearing cycles,

- banking system delays.

(vii) Informational and cognitive costs
- participant misunderstanding,

- informational asymmetry,

- strategic misinterpretation of PoR,

- behavioral biases.

These frictions vary by intermediary and jurisdiction and are
external to the #PEG engine. They affect external pricing and
participant experience only, do not alter draw execution, allocation
outcomes, ot execution finality, are not recognized by the engine,
and are explicitly out of scope for this specification.

9. #’EG AND THE ECONOMICS OF CHANCE

The #PEG engine operates through randomized allocation as its
sole allocation mechanism. This design situates the #PEG engine
(operating under PoL. constraints) within a broader class of
economic arrangements that incorporate chance as a structuring
principle rather than as a corrective or optimization tool (see
section 7.2).

In the #PEG engine, randomness is not used to improve
outcomes, balance incentives, or approximate fairness according
to external criteria. It functions as a procedural condition of
execution. The PoLL protocol does not evaluate results, enforce

The #PEG Engine v4.3.13 28

20241231

allocation patterns, or attempt to align outcomes with normative
expectations.

9.1 Randomness as Procedure, Not Justification

The use of chance in the #PEG engine does not constitute a
normative claim about fairness, justice, or efficiency.

Randomness is specified here as an allocation procedure, not
advanced as a theory of justice, welfare, or fairness.

Randomized allocation is implemented as a fixed procedural rule
that removes discretionary choice from Protocol-level allocation.
By doing so, the Engine constrains avenues for influence,
negotiation, or strategic positioning within its own execution logic.

The #PEG engine does not assert that random allocation is
superior to alternative mechanisms. It merely enforces it as an
irrevocable condition of participation. Any evaluation of this
condition—whether favorable or critical—occurs outside the
Engine boundary.

9.2 Comparison with Deterministic Allocation Mechanisms

Most contemporary monetary and distribution systems rely on
deterministic criteria such as contribution, stake, identity,
eligibility, or historical participation. These criteria embed
assumptions about merit, entitlement, predictability, or behavioral
incentives.

The #PEG engine incorporates none of these criteria. Allocation
outcomes are determined exclusively by draw execution. The
Engine does not record, accumulate, or act upon participant
history, economic status, or contribution beyond the submitted
allocation commitment required for entry.

This places the #PEG engine outside systems designed to reward
effort, optimize incentives, or manage behavior through feedback.
It also distinguishes it from mechanisms intended to correct
perceived inequities through targeted intervention.

9.3 Behavioral Interpretation and External Response

Participants and observers may interpret randomized outcomes in
various ways, including as expressions of neutrality, indifference,
unpredictability, or exposure to risk.

Such interpretations may influence:

- participation patterns,

- usage contexts,

- narrative framing,

- or external organizational arrangements.

The #PEG engine does not respond to these interpretations.
Participation decisions, risk perceptions, and strategic behavior

The #PEG Engine v4.3.13 29

20241231

occur entirely outside the Engine boundary and do not alter
execution logic.

9.4 Limits of Randomized Allocation

Randomized allocation does not guarantee specific economic
outcomes.

It does not ensure:

equal results,

- sustained participation,

- denomination persistence,
or economic stability.

#PEG draw outcomes may vary significantly depending on
participation conditions, execution costs, and external frictions.
The #PEG engine does not mitigate such variability; it exposes it
through observable execution data and reported metrics such as
the PoR, and implements no corrective or compensatory
mechanisms.

10. USE CASES AND DISTRIBUTION DYNAMICS

The #PEG engine does not define, privilege, or optimize for
specific uses. The protocol specifies a mechanism for draw-based
allocation of reference-denominated units; any application of that
mechanism arises from external organization, participant
behavior, and contextual constraints.

All usage patterns described in this section are external
arrangements. They do not modify Protocol or Engine behavior
and are not encoded as objectives or functions.

10.1 The Net Draw Return (NDR)

Specific usage may result in a draw specific Net Draw Return. The
NDR is a System-level, participant-relative quantity expressing the
proportion of #PEG-denominated allocation commitments that
result in realized economic outcomes for a given participant or
access context, after accounting for both Engine-level execution
frictions and System-level frictions.

The NDR is not computed, reported, or recognized by the #PEG
engine and has no effect on draw execution, allocation, or the
PoR.

The PoR may serve as an input to external estimation of the

NDR, but the NDR varies across participants and access contexts
and is not a property of the draw itself.

10.2 Participation and Coordination Contexts
#PEG draws may be accessed through individual participation,

pooled entry, or coordinated group arrangements, reflecting local
practices, infrastructural constraints, cultural familiarity with

The #PEG Engine v4.3.13 30

20241231

chance-based allocation, or organizational preferences. The
#PEG engine does not distinguish between these contexts: all
valid entries are treated equivalently at execution time, and any
coordination or pooling logic operates externally and has no effect
on draw execution or outcome determination.

10.3 Mediated Distribution and Access Structures

Access to #PEG draws may be facilitated by external actors
providing interfaces, aggregation services, or custodial
arrangements. These structures may influence accessibility,
transaction costs, participation patterns, or user expetience.

The #PEG engine does not recognize mediated distribution as a
distinct operational mode. Entries submitted through
intermediaries are processed identically to direct entries at
execution time. All economic and organizational arrangements
between participants and intermediaries operate outside the
Engine boundary.

10.4 Environmental and Contextual Variation

#PEG draws may be instantiated across environments with
differing levels of infrastructure reliability, taxation, regulatory
oversight, financial inclusion, cultural acceptance and participant
familiarity with digital systems.

Such variation may affect access methods, execution costs, or
denomination legibility. The #PEG engine does not adapt to
environmental conditions. Execution behavior remains invariant
across cultural, geographic, regulatory, or infrastructural contexts.

10.5 Non-Prescriptive Scope of Use

The #PEG engine does not prescribe intended uses such as
payments, savings, speculation, redistribution, or institutional
settlement. It embeds no incentives or constraints favoring any
particular application.

Participants may adopt #PEG draws for purposes aligned with
their own objectives or constraints. The Engine neither
encourages nor discourages such uses and does not adapt based
on observed patterns.

10.6 Non-#PEG draw parameters

Besides the #PEG Draw Initiation Parameters define in 6.3, the
following parameters may be chosen by initiators or intermediaries
outside the engine, but are not draw parameters:

- access fees or participation costs,

- intermediary commissions,

- custody arrangements,

- KYC/AML requirements,

- interface design,

- batching strategies beyond engine aggregation rules,

- post-allocation handling or redistribution.

The #PEG Engine v4.3.13 31

20241231

These affect the NDR, not the PoR.
11. LIMITATIONS AND OPEN QUESTIONS

The #PEG engine defines a fixed execution structure with no
internal mechanisms for adaptation, recovery, or correction. As a
result, its operation is subject to a set of limitations that arise
directly from its design constraints and its dependence on external
conditions.

These limitations are not flaws to be addressed within the Engine.
They are structural consequences of deliberate design choices.

11.1 Dependence on External Infrastructure

Pegged relies on the continued availability of external
infrastructure, including:

- public blockchain networks,

- transaction inclusion mechanisms,

- publicly verifiable randomness providers,

- and external data sources referenced at execution time.

The #PEG engine does not embed incentives, guarantees, or
redundancy mechanisms for the maintenance of this
infrastructure.

Under strict execution semantics, a draw may terminate without
execution if required conditions are not met at the scheduled
execution time. In such cases, allocation commitments may be
released or, if release cannot be deterministically performed,
irreversibly destroyed. This behavior reflects a design choice to
enforce finite draw lifecycles and to prevent persistent locked
states within the Engine.

Failure, degradation, or withdrawal of external services may
prevent draw execution or settlement. No fallback, substitution, or
recovery mechanisms exist within the protocol.

11.2 Participation Variability

Participation levels may vary significantly across #PEG draws due
to external factors such as:

- access Costs,

- coordination practices,

- regulatory constraints,

- participant expectations,

- or narrative framing.

Low participation may reduce allocation efficiency or increase the
relative impact of execution costs. High participation may increase

contention for outcomes.

The #PEG engine does not regulate participation levels, smooth
variability, or respond to participation dynamics.

The #PEG Engine v4.3.13 32

20241231

11.3 Denomination Risk

#PEG draws are denominated in reference units without
enforceable parity mechanisms.

Denominated outcomes are not claims on reserves and are not
redeemable at fixed rates. If participation efficiency degrades or
external costs increase, outcomes may diverge from reference
expectations.

The Engine does not intervene to defend denomination, restore
alignment, or compensate participants for divergence.

11.4 Irreversibility of Outcomes
All draw outcomes are final.

Execution errors, misconfigurations, misunderstandings of #PEG
draw parameters, or unintended consequences cannot be
corrected once a draw has been initialised.

Draw initiators bear full responsibility for configuration choices.
Participants bear full responsibility for entry decisions. The #PEG
engine provides no appeal, compensation, or remediation
mechanisms.

11.5 Absence of Governance and Evolution

The #PEG engine does not include governance mechanisms nor
upgrade paths.

Design limitations, emergent behaviors, or external challenges
cannot be addressed within deployed instances. Any modification
or improvement requires the deployment of new, independent
draws or parallel protocols.

Existing draws remain unaffected by subsequent design changes,
forks, or reinterpretations.

12. RISK SURFACES AND EXTERNAL MITIGATION
PATTERNS

The #PEG engine exposes a set of risk surfaces that arise from
its execution model, anonymity posture, and reliance on external
infrastructure. These risks are not addressed within the Engine
itself.

Any mitigation occurs externally and does not modify PoL.
protocol or Engine behavior. The presence of mitigation patterns
does not imply endorsement, standatrdization, or effectiveness.
12.1 Sybil Participation and Coordination Risk

Because participation is permissionless and anonymous, #PEG

draws are exposed to Sybil participation, coordinated entry
strategies, and aggregation behavior.

The #PEG Engine v4.3.13 33

20241231

The protocol does not distinguish between individual and
coordinated participants and does not detect or prevent Sybil
behavior.

External mitigation patterns may include:

- entry caps imposed by intermediaries,

- participation heuristics applied by distributors,

- social coordination norms within specific access contexts.

Such measures operate entirely outside the Engine boundary and
do not affect draw execution.

12.2 Draw Pool Integrity and Interface Risk

Participants can interact with the #PEG engine through interfaces
or intermediaries that collect allocation commitments and submit
entries on their behalf.

These arrangements introduce risks related to:

- misrepresentation of draw parameters,

- diversion or misallocation of allocation commitments,
- opaque aggregation practices,

- custody exposure between instantiation and execution.

External mitigation patterns may include:

- interface transparency and disclosure,

- independent verification of contract addresses,
- open-source front-end code,

- community reputation or audit practices.

The Engine does not validate interfaces, certify draw authenticity,
or monitor custody arrangements.

12.3 Randomness and Data Source Dependence

The #PEG engine relies on external randomness providers and,
where applicable, external data sources referenced at execution
time.

Failure, manipulation, delay, or withdrawal of these services may
prevent draw execution or affect outcome determination.

The #PEG engine eliminates the risk of persistent locked states
by enforcing finite draw lifecycles and mandatory register
clearance. As a consequence, under strict execution semantics,
failure to execute may result in irreversible loss of allocation
commitments if deterministic release cannot be performed. This
risk reflects a deliberate tradeoff between preventing indefinite
value accumulation within the Engine and tolerating bounded loss
events at draw termination.

The Engine does not adjudicate randomness quality beyond
verifiability at execution and does not substitute failed inputs.

12.4 Liquidity and Conversion Risk

The #PEG Engine v4.3.13 34

20241231

Denominated outcomes produced by #PEG draws may be
subject to liquidity constraints, conversion spreads, or market
fragmentation when exchanged or valued externally.

Such risks arise from:

- limited market depth,

- jurisdictional constraints,

- intermediary practices,

- or participant expectations.

External mitigation patterns may include:

- market-making activity,

- arbitrage,

- bilateral conversion arrangements,

- acceptance of denomination risk by participants.

The #PEG engine does not coordinate liquidity provision or
support secondary markets.

12.5 User Experience and Disclosure Risk

Participation in #PEG draws involves probabilistic outcomes and
irreversible execution. Participants may underestimate risk,
misunderstand draw parameters, or misinterpret denomination.

External mitigation patterns may include:
- explicit disclosure of draw parameters,
- probabilistic framing,

- educational material,

- conservative interface design.

The #PEG engine provides no warnings, guidance, suitability
checks, or protective disclosures.

12.6 Regulatory and Narrative Exposure

The #PEG engine’s anonymity posture, lack of governance, and
refusal of redemption guarantees may attract regulatory scrutiny
or reputational challenge.

Interpretations of legality, compliance obligations, or consumer
protection vary by jurisdiction and may change over time.
External mitigation patterns may include:

- jurisdictional filtering by intermediaries,

- legal disclaimers,

- selective access restriction,

- narrative framing by participants or commentators.

The Engine does not adapt to regulatory environments or enforce
compliance.

13. CONCLUSION
This document has specified a monetary engine whose operation

is limited to the execution of irrevocable, draw-based allocations
denominated in reference units and constrained by verifiable

The #PEG Engine v4.3.13 35

20241231

randomness. The specification is complete at the level it defines:
the Proof of Luck protocol, the #PEG engine, and the boundary
separating both from the System in which their outputs are
interpreted.

The #PEG engine has been presented neither as a solution to
monetary instability nor as a proposal for reform. It does not
claim to correct existing systems, compete with them, or replace
them. Its ambition is narrower and, in a sense, more radical: to
demonstrate that money can be reduced to form without
collapsing into function, and that allocation can occur without
justification, policy, or entitlement.

What emerges from this reduction is not an answer to the
question of what money should be, but a clarification of what
money can be when its usual predicates are suspended. By
formalizing denomination without valuation, allocation without
merit, and execution without governance, the #PEG engine
exposes a layer of monetary reality that is ordinarily obscured by
economic purpose. It produces monetary facts without explaining
them, outcomes without defending them, and units without telling
us what they are worth.

This abstention is deliberate. The Engine does not deny that
meaning, value, or stability may arise around its outputs. On the
contrary, it assumes that such meanings will emerge—socially,
culturally, and economically—once the Engine is embedded in a
broader system. But it refuses to anticipate, encode, or manage
those meanings. In doing so, it draws a sharp boundatry between
what can be specified and what must remain contingent.

The result is a monetary artifact that is incomplete by design. It
provides denomination, allocation, and finality, and then stops.
Everything that usually follows—exchange, valuation,
institutionalization, belief—is left to the world beyond the Engine.
This incompleteness is not a limitation to be overcome, but the
condition under which a different kind of monetary
experimentation becomes possible.

Whether such a system is useful, adoptable, or durable is not a
question this document attempts to answer. Its purpose has been
more modest and more demanding: to articulate a monetary
structure that refuses to justify itself, and to invite others to
consider what forms of monetary life might arise when
justification is no longer embedded at the point of origin.

In that sense, the #PEG engine is less a blueprint than a
boundary object. It marks a limit—of specification, of
governance, of theory—and asks what happens when money is
allowed to begin there.

The #PEG Engine v4.3.13 36

20241231

NORMATIVE DEFINITIONS AND COMPLETION
CLARIFICATIONS

This subsection defines a minimal set of normative terms and
conditions required to complete the specification of the #PEG
engine. These definitions do not introduce new functionality,
objectives, or guarantees. They exist solely to remove ambiguity
where execution semantics depend on external inputs or structural
representations.

N1. Publicly Verifiable Randomness (Normative Minimum)

For the purposes of the Proof of Luck (PoL) protocol, a
randomness source is publicly verifiable if and only if:

Unpredictability prior to revelation
The random value cannot be known or reliably inferred by any
participant or observer prior to its disclosure.

Post hoc verifiability

Any observer can independently verify, after the fact and without
privileged access, that:

- the random value was produced according to the declared
randomness mechanism, and

- the value consumed by the Engine corresponds exactly to the
value produced.

Non-equivocation

The randomness source provides a single, non-ambiguous output
for a given execution context. Multiple competing values for the
same execution context are treated as invalid.

At execution time, randomness is considered available if a value
satisfying the above conditions is supplied to the execution
environment in the form required by the deployed draw contract.
Randomness is considered unavailable or invalid if no such value
can be verified at the scheduled execution time.

The #PEG engine does not assess randomness quality beyond
these minimum properties and does not substitute, retry, or defer
execution in the event of randomness unavailability.

N2. Allocation Commitment (Engine-Level Representation)

An allocation commitment is an Engine-internal representation of
a prospective #PEG-denominated allocation submitted prior to
draw execution.

An allocation commitment:

- is recorded in the draw register,

- is non-transferable prior to execution,

- does not constitute custody of a spendable balance,

- and confers no entitlement, claim, or guarantee of allocation.

Allocation commitments become effective allocations only upon
execution, at which point they are either:

The #PEG Engine v4.3.13 37

20241231

- consumed by allocation settlement (executed draw), or
- deterministically reversed or destroyed (cancelled draw).

At no point does the #PEG engine custody transferable #PEG
balances prior to execution. The draw register therefore cannot be
looted, drained, or redistributed independently of execution.

N3. Deterministic Release and Release Failure Conditions

Upon draw cancellation, the Engine attempts a deterministic
release of all recorded allocation commitments.

A deterministic release is possible if and only if:

- each commitment recorded in the draw register can be uniquely
and unambiguously mapped to a submission wallet address, and
- the Engine can perform a mechanical reversal of the prior
commitment recording without requiting external input,
discretion, or interpretation.

Deterministic release fails if any of the above conditions are not
met, including but not limited to:

- aggregation modes that do not preserve a one-to-one mapping
between commitments and submission wallets,

- incomplete or incompatible provenance data for commitments,

- structural constraints of the deployed draw contract that prevent
reversal at terminal resolution.

Release failure is a structural condition, not an error state.
N4. Burn Semantics (Terminal Enforcement)

If deterministic release cannot be performed, the Engine must
burn the unreleasable commitments.

Burning:

- is non-discretionary,

- is terminal,

- and exists solely to enforce finite draw lifecycles and register
clearance.

Burning does not constitute punishment, slashing, or economic
deterrence. It reflects a deliberate design tradeoff between
preventing indefinite value accumulation within the Engine and
tolerating bounded loss events at draw termination.

N5. Scheduled Execution Time and Execution Windows

Unless explicitly specified otherwise by a given draw type, a
#PEG draw executes at a single scheduled execution time, which
constitutes a hard, non-deferable boundary.

If a draw type supports an execution window, the following rules
apply:

- The window defines the temporal interval during which a single
execution attempt may occut.

The #PEG Engine v4.3.13 38

20241231

- The first admissible execution opportunity within the window is
treated as the scheduled execution time.

- Failure to execute at that opportunity results in immediate
cancellation.

No retry, postponement, or second attempt occurs within the
window.

Execution windows therefore do not introduce liveness guarantees
or retry semantics.

NG6. Entry Acceptance and Restriction Enforcement

At the Engine level, participation in #PEG draws is
permissionless by default.

Entry restriction may occur only through:

- Engine-level restriction, where the deployed draw contract
includes an explicit admissibility function evaluated prior to entry
recording; or

- System-level restriction, where access is gated by external
interfaces, intermediaries, ot coordination mechanisms that do not
modify Engine semantics.

System-level restriction does not alter the permissionless nature of
the Engine itself and has no effect on execution logic once a valid
entry is recorded.

N7. Economic Griefing and Cost Amplification

The #PEG engine does not attempt to prevent or mitigate
strategies that intentionally increase execution costs, contention,
or cancellation probability.

Such strategies, where present, constitute system-level economic
griefing risks and are external to the Engine’s scope. The Engine
neither detects nor responds to such behavior and does not adapt
execution rules in response.

N8. Observational References

Any references to stochastic properties (e.g;, Markovian behavior)
describe possible ex post observational patterns arising from
repeated draw execution and participation. No stochastic model,
convergence property, or probabilistic guarantee is specified or
assumed by the Engine.

The #PEG Engine v4.3.13 39

20241231

	Explicit Non-Steps (Boundary Clarification)
	The following are not #PEG engine process steps and must not be represented as such:

